
Elucidating the Mashup Hype: Definition, Challenges,
Methodical Guide and Tools for Mashups

Agnes Koschmider
Institute of Applied Informatics and

Formal Description Methods
Universität Karlsruhe (TH)

Karlsruhe, Germany
+49 721 6084522

agnes.koschmider@
aifb.uni-karlsruhe.de

 Victoria Torres
Centro de Investigación Pros

Universidad Politécnica de Valencia
Valencia, Spain
+34 963877000

vtorres@pros.upv.es

Vicente Pelechano
Centro de Investigación Pros

Universidad Politécnica de Valencia
Valencia, Spain
+34 963879350

pele@dsic.upv.es

ABSTRACT

Mashups are a current hype that is attracting high interest by
academia and industry now and in the next years. The idea behind
a mashup is to create new content by reusing and combining
existing content from heterogeneous sources. Advantages of
mashups are that even people with no knowledge of programming
languages can easily build new Web applications and create new
forms of visualizations. To support the mashup construction
process several tools have been proposed with easy-to-use
functionalities. However, from the research perspective it is
dissatisfying that neither a clear definition and classification
model for mashups nor a separation between mashups and other
forms of application integrations exist. The aim of this paper is to
elucidate the mashup hype by providing a definition and
classification model for mashups and to sketch a methodical
engineering guide for mashups. Additionally, an overview of
tools and languages supporting the mashup creation is presented.

Categories and Subject Descriptors
H.5.3 [Web]: Web Engineering– model driven development,
mashups, web services.

General Terms
Design, Languages.

Keywords
Mashups, Mashup Construction, Tools, Method Engineering.

1. INTRODUCTION
The idea behind the term mashup is not new. The integration of
different resources is an issue usually faced during software
development. In fact, most engineering methods take into account
the fact that some data and functionality is provided by external
systems and provide mechanisms to specify them properly.
The main reason why mashups are gaining tremendous popularity
is that even non-technical people are able to create new content
and representations of resources without much effort or
knowledge of programming languages. Another advantage is that
the execution of mashups is not performed by black-box systems
(like in the service-oriented execution) but rather user-driven,
which makes the resource integration process much more

transparent in comparison to conventional application integration
platforms.
When undertaking a literature review about mashups then the
search results about methodologies or infrastructures for mashup
constructions are disillusioning. The amount of comprehensible
approaches proposed so far is minimal and no clear line exists
between mashups and technologies such as Service-oriented
Architecture (SOA). The confusion even starts when looking for a
generic definition of mashups. The definitions proposed in the
literature span technical, business (in sense of economic) or
industry perspectives. The next confusion follows when searching
for a classification model for mashups. Too many references [for
instance see 1, 2, 3] have different perspectives on mashups. In
particular, the work of Hoyer & Fischer [1] is similar to the work
of this paper. But Hoyer & Fischer limit their focus on enterprise
mashups, proposes a more specific classification model and does
neither discuss challenges for mashups nor investigate a guide for
a methodical construction of mashups.
The intention of this paper is to provide a generic definition and a
classification model for mashups. The definition of the term
mashup affects also a separation of the term mashup to the
currently frequently used technology SOA (how do these
technologies complement each other and how do they differ?).
Furthermore, we aim at discussing challenges of mashups and to
present methodical concerns that should be considered when
developing mashups. Finally, our paper presents an excerpt of
tools and languages supporting the creation of mashups.
The structure of the paper is as follows. The next section
discusses the different definitions for mashups and points out one
clear definition. Links and differences between mashups and SOA
are presented in Section 3. Section 4 describes a classification
model for mashups. In Section 5 challenges are discussed that
have to be faced with mashups. Section 6 presents concerns that
should be considered when developing a consistent mashup
application. An excerpt of mashup tools is given in Section 6. The
last section summarizes our work and motivates the need for more
research on mashups.

2. DEFINITIONS FOR MASHUPS
The term mashup has its roots in the musical domain referring to
artists that mix several pieces of music, usually from different
musical styles, into one single record. However, this term has
been generalized and brought to other domains introducing the

idea of derivating a new work by mixing two or more pieces.
Among these domains we find the digital domain, the video
domain and the Web domain. From these domains, in this work,
we are interested in the last one, the Web domain. Even though its
meaning is quite clear, there is no official definition of mashups.
Nevertheless, it is possible to find several definitions such as the
one provided by Wikipedia, which states that a mashup is a Web
application that combines data from one or more sources into a
single integrated tool. We regard this definition as too tight since
it does not take into account, for example, aspects such as source
heterogeneity. In fact, the integration/combination of different
sources is not limited to data but also to functionality and layout
styles.
Therefore, in order to provide a more precise and complete
definition of this term we have extracted the most relevant terms
included in several definitions found in the Internet. These terms
include Web page or application, integration, combination, reuse,
data sources, APIs, third party data, Web 2.0 and data
processing. Taking into account these terms we propose to define
a mashup as a Web-based application that is created by
combining and processing on-line third party resources, that
contribute with data, presentation or functionality. It is important
to note that in this definition, on-line third party resources refer to
any type of resource available in the Internet, independently of
the format in which this is provided (by means of an API, Web
Feeds or screen scraping techniques). As a result, a mashup
provides a new resource not conceived by the original combined
resources. Finally, based on the nature of the original combined
resources mashups can be categorized in different groups as
explained in Section 4.

3. LINKS AND DIFFERENCES
From the definition provided in the previous section, mashups can
be considered as a specific implementation of a SOA within the
Web framework. In addition, an important difference between
SOA and mashups is that third-party resources in mashups are not
limited to services. As we have already mentioned, these can also
be given as data sources. Therefore, the SOA paradigm is
conceived to organize and utilize distributed capabilities that may
be under the control of different ownership domains. However,
the SOA paradigm embraces a broader scope providing also
means to offer, discover, interact with, and use those distributed
capabilities. In order to prove the relationship between SOA and
mashups we present the SOA principles and comment the actual
state in terms of mashups.

• Service autonomy. Services have control over the logic they
encapsulate. In the case of mashups, the scope of each source
is limited to the own source.

• Service composability. Collections of services can be
coordinated and assembled to form composite services. In
the case of mashups, two or more sources are connected
properly to become a new source. In this case, depending on
the type of mashup, the complexity of the composability
changes.

• Service contract. Services adhere to a communications
agreement, as defined collectively by one or more service
description documents. Third party service description
provide usually a simple and well documented API
describing the way the resource can be used (method name,
return type and textual description).

• Service discoverability. Service description languages such
as WSDL are designed to be outwardly descriptive so that
they can be found and integrated via available discovery
mechanisms. In the case of mashups, sources should be
described in a way that these could be processed and
discovered. This means including some semantic information
about the intention of the source as well as the preconditions
and postconditions requirements to perform a proper use of
the source.

• Service encapsulation. Beyond what is described in the
service contract, services hide logic from the outside world.
Service providers only provide access to the APIs that
describe the source and nothing else is said about the logic
behind the source.

• Service Loose coupling. Services maintain a relationship
that minimizes dependencies and only requires that they
maintain an awareness of each other. The resources
combined in a mashup are totally independent.

• Service reusability. Logic is divided into services with the
intention of promoting reuse. In the case of mashups, each
source was conceived for a very specific intention and the
main objective is to be reused in different domains in order
to get the most out of the own resource.

• Service statelessness. Services minimize retaining
information specific to an activity. In the case of mashup,
neither services nor data sources keep their state. However,
the mashup –the composer- can keep the state by means of
the used programming language.

This principles analysis reveals that mashups conform to SOA.
However, the fact that mashups are strongly linked to the Web 2.0
requires extending these principles with one more. This new
principle relates to the facility of use. The reason to introduce this
principle is that mashups are targeted to a wider range of users,
including non-programmer experts. In the mashup context, end-
users play a very important role, they are not just the one in
charge of using the applications but they also actively participate
in their evolution.

4. CLASSIFICATION OF MASHUPS
To provide a classification of mashups we investigated several
models for mashup categorization [1, 2, 3, 4]. To summarize from
our point of view mashups can be classified based on the
following four questions:

• What to mash up?

• Where to mash up?

• How to mash up?

• For whom to mash up?
In the following subsections we will separately regard each of
these four perspectives on mashups.

4.1 What
Depending on the sort of assets being combined or integrated,
mashups are assigned to one of the following three categories:
presentation, data or application functionality.
A presentation mashup focuses on retrieving information and
layout of different Web sources without regarding the underlying

data and application functionality. For this type of mashup pre-
built widgets are simply drags and drops into a common user
interface. Usually, the creation of a presentation mashup requires
little or no knowledge of programming languages.
A data mashup merges data provided by different sources (e.g.,
Web services, feeds or plain HTML) into one content page (i.e.
for a given city combining different services to obtain its weather
forecast, upcoming events and photos). The user mixes data from
multiply sources and customizes the data flow of for example the
Web page containing data from different sources.
A functionality mashup combines data and application
functionality provided by different sources to a new service. The
functionalities are accessible via APIs.
Based on the assets being combined one can find another
classification of mashups such as Mapping-Mashups
(combination of information into maps, e.g., Google maps), Foto-
/Video-Mashups (combination of information into foto/video files
e.g., from flickr), Search/Shopping-Mashups (integration of
mechanisms for the comparison of product prices into Web pages)
or News-Mashups (integration of news into personal Web pages).
We regard this kind of mashup types as a refinement of the
mashups introduced above where for example a presentation
mashup can consist of resources being mashed out of news.

4.2 Where
Mashups can be distinguished depending on the location where
they are mashed up. Server-side mashups integrate resources
(e.g., services and data) on the server. Client-side mashups
integrate resources on the client, often a browser. Usually a
mixture of client-side and server-side applications is used for the
creation of mashups. An elaborated explanation of server-side and
client-side mashups can be found in [5].

4.3 How
Mashups can be further categorized depending on the modality
the resources are integrated or combined to one representation.
The extraction mashup can be considered as a data wrapper
collecting and analyzing resources from different sources and
merging the resources to one content page.
In a flow mashup the user customizes the resource flow of the
Web page combining resources from different sources. The
resources are transformed and integrated within the mashup
application.

4.4 For whom
Different mashup tools can be used to build mashups that
combine content from different sources but distinguishing the
target group being addressed. In this context, mashups can be
categorized in consumer mashups and enterprise mashups, also
referred to as business mashups.
A consumer mashup is intended for public use and combines
resources (e.g., layout or data) from different public or private
sources in the browser and organizes it through a simple browser-
based user interface.

An enterprise mashup merges multiple resources (e.g., data and
application functionality) of systems in an enterprise
environment. These mashups combine data and application
functionalities of different systems e.g., ERP, CRM or SCM in
order to respond to their objectives. The creation of enterprise
mashups requires considering security, governance or enterprise
policies. Enterprise mashups provide a fast way for merging and
representing internal and external enterprise resources from
different sources without a middleman.
In the next section we will describe challenges that have to be met
when constructing mashups.

5. CHALLENGES FOR THE MASHUP
CONSTRUCTION
To establish mashups as an efficient technology for resource
integration the following seven challenges should be solved where
some of these challenges are not only unique to mashups but also
to the World Wide Web.

• Cataloguing. Some Web pages are already available that list
mashups and provide an interface for searching of mashups
such as programmableweb.com. Mashup creators can
insert their mashups in the list and thus share their mashups
with others. But what is missing is a directory that stores and
catalogues the mashups in a consistent way.

• Data integrity. Mashups are a quick way to create new
applications but they can raise data integrity problems when
changes of end-users are not valid against the underlying
commitment. Another concern may raise integrity problems
if e.g., an end-user finds a service that brings some value to
the data or functionality included in the mashup. Then
mashups need to be modified at runtime. Thus, when running
a mashup control mechanisms should be considered that
ensure the integrity of the mashup against end-user changes.

• Making data Web-enabled. Mashups are constructed of
different resources that are available on the Web. However,
currently a lot of data and functionalities are not set up on
the Web and thus are not accessible via feeds, HTML or
Web services. To make more resources “Web-enabled”
require formats and tools that facilitate an efficient access
and the connection of resources to the Web. Additionally,
some data that is available on the Web cannot be reused to
“mashing” because the data is capsulated with the
presentation layer. Thus, mechanisms are needed that
support the creation of mashups out of data and also tools
that offer functionalities to decouple data from multiple
sources from their presentation.

• Security and identity. While security challenges have been
identified for mashups [7, 8] only few approaches exist that
try to handle security lacks and identity of mashups [9, 10,
11]. Lawton [7] sketches that security challenges emerge
when end-user connect dynamically to Web sites and not
necessarily under the provider’s control. Additional security
challenges arise if the mashup contains confidential data or
security log-ins are required to enter some data. This requires
mechanisms to control the user connection and the data
security.

• Sharing and reusing. The next concern for mashup
construction is that vendors of mashup tools should provide

mechanisms to allow end-users sharing their built mashups
with others and thus facilitating the reuse of pre-built
mashups. This means also that mashup owners need to give
their permission before making the mashup available for the
community. Otherwise end-users have to face legal
implications of using this technology and have to expect
consequences [6]. To facilitate a (legal) resource sharing the
mashup should be defined in a format that is readable by
different machines and consider accountability. Challenges
that have to be met in this context are an easy-to-use access
to mashups, efficient mashup search functionalities and light-
weight formats that enable even for non-programmers a
smooth mashup reuse.

• Trust certificates. The owner of such a directory service can
issue a license that certificates the mashup. Because so far,
no certification mechanisms exist that guarantee end-users
the trustworthiness of the mashup. Similar to trust
certificates for online shopping it is imaginable that mashup
owners grant a licence at the owner of the directory service.
In case of a positive certification the mashup owner can
assure end-users the trustworthiness of the content and also
the integrity of the mapping application.

• Version control mechanisms. Mashups consist of different
resources collected from various sources. Resource owners
are responsible for their content and can change and update
its content or respectively its software whenever they regard
it as necessary. To keep the mashup content up-to-date a
version control mechanism is required that automatically
informs the mashup owner about updates of the integrated
underlying software (imagine the mashup is build upon
several APIs).

In the next section we will present a guide for a methodical
construction of mashups, which takes care on the presented
challenges.

6. GUIDE FOR A METHODICAL
CONSTRUCTION OF MASHUPS
There is a need for a methodology for the construction of
mashups. Especially in an enterprise environment, where data and
functionalities are stored in multiple systems, a consistent mashup
construction methodology can guarantee an efficient merging of
data and application functionalities. The service-oriented
paradigm, which emerged in the last years can foster enterprise
mashup development. Especially, when business process models
contain data-driven decision points mashups can be used to call
for them. But the novelty of a mashup application is that all data
and functionality exists before one creates the application and
these resources are given in a particular technology. In the case of
composite services, where services invoke again one or more
services, a consistent mashup construction methodology can be
used to easily find and correctly combine the corresponding
available services.
The approaches found in the literature focus more on the
development of mashup architectures [12], of mashup systems
[13, 14] or concepts for integration of data [15] rather than on a
methodology for mashup construction. It would be desirable to
consider Model Driven Development (MDD) techniques for the
construction of this method. These techniques, used throughout
the development process can help to minimize the impact that

technology evolution has over software solutions. Among the
benefits introduced by these techniques we find (1) technological
independence (by keeping system descriptions in models that
characterize the target domain), (2) semi-automatic construction
of the system (by deriving knowledge from models applying
model to model transformations) and (3) automatic code
generation (by the application of model to text transformations).
The following guide can be used for a methodical construction of
mashups. This guide is more useful for enterprise mashups rather
than for consumer mashup where mashups are defined for trial or
demonstration purpose.
1. State the problem domain and define:

• Business objectives and

• Success factors
2. Identify the IT environment, especially:

• all application semantics in the corresponding problem
domain

• all resources to be mashed in particular services
available in that domain

• all information sources and sinks available in that
domain

• all processes in that domain

• if necessary make resources Web-enabled
3. Identify technical requirements, especially:

• catalogue all interfaces outside of the domain that
should be leverage (data, services and simple
information)

• define new resources, services and information bound to
those services

• define new processes, as well as services and
information bound to those processes

4. Identify the technology set, especially:

• select your technology set

• deploy e.g., by using a SOA technology

• Test and evaluate
5. Maintain your mashup, especially:

• define a version control mechanism

• define a data integrity mechanism

On the one hand, according to MDD techniques, steps 1 and 2
would require the use of models to keep the system description
independent of any technological detail. As a result, these steps
would just consider IT necessities. On the other hand, steps from
3 to 5 attend to technological issues. In this case, transformations
to maintain the consistency between the system description and
the actual software solution are required.

7. TOOLS
Several mashup tools have been published that provide
functionalities for building, storing and publishing mashups.
These tools were conceived as Web 2.0 applications allowing

users sharing their created mashups and providing them with very
intuitive drag and drop facilities.
The range of these mashup tools spans from open-source tools to
highly-cost licence tools. Some of the vendors offer a coding
editor while others focus on users with no programming skills and
thus provide easy-to-use access and application to their tool
suites.
Based on our classification schema of mashups presented in
Section 4 we discuss in this section tools supporting the creation
of the corresponding mashup types.
Usually resource owners facilitate the access to their data by
offering application programming interfaces (API). These APIs
follow standard protocols and can easily be used to combine
resources by a mashup tool from multiple sources. The whole
range of APIs for mashups is listed on the Web page
programmableweb.com. The APIs can be browsed by the
preferred programming languages (e.g., PHP, JAVA or .NET) or
predefined categories where the Google Maps API seems to be
the most popular one.
The combined resources can quickly be displayed to users in a
Web browser using, resulting transparent to users the techniques
(SOAP [16], REST [17], Screen scraping or languages such as
JSON1 used to access and combine these resources.
Table 1 shows an overview of mashups tools categorized
according to our classification model in Section 4 2. An analysis
of mashup tools regarding its suitability for data analysis can be
found in [18]. Table 1 does not consider server-side and client-
side mashup styles because the location where to mashup differs
with system configurations. In the following we will introduce
four mashups tools covering different mashup categories and also
a language for the mashup creation will be sketched.
Presentation, extraction and consumer mashup tool. Example
for such a mashup tool is dapper [19]. The term dapper results
from data and mapper, which exactly describes the functionality
of the tool namely to simply drags and drops (map) pre-built
widgets into a common user interface and subsequently to reuse
and share the output.
The usage of dapper is very simple and does not require any
knowledge of programming languages. Initially the user has to
search for the Web pages out of them she would like to extract
content. Then she highlights the area that should be extracted and
finally dapper composes the extracted content to one
representation. The user can make the output available for others
who can reuse the representation in their mashup environment.
Figure 1 shows a screenshot of the dapper interface. The user is
scrolling a specific Web site and aims at extracting a logo of that
side. The content to be extracted is highlighted in orange.

1 http://www.json.org/
2 In 2009 Google has closed the Google Mashup Editor. Therefore

we do not consider this tool in our list.

Figure 1. dapper

Data, flow and consumer mashup tool. Example for such a
mashup tool that mixes data flow from multiply sources is DERI
Pipes [20]. The implementation of this tool was inspired by
Yahoo! Pipes but the advantage to this tool (in contrast to
Yahoo’s tool) is that DERI pipes can handle the RDF format and
thus enables to build semantically enhanced mashups. DERI Pipes
does not need any knowledge of programming languages but
requires an understanding of data formats such as RDF. The final
output respectively mashup is defined in XML or RDF and can be
published in order to share with other users.
Figure 2 shows the user interface of DERI pipes. In this example
the data of Tim Berners-Lee is mixed from three different
sources.

Figure 2. DERI pipe

Data, functionality, flow and enterprise mashup tool. Example
for a tool providing functionalities to create enterprise mashups is
Serena Mashup Composer included in the Serena Mashup Suite.
According to the tool vendors Serena considers the integration of
information, business processes and data to one common
representation.
Figure 3 shows an example for the creation of a vacation request
mashup. The idea of that mashup is that users can submit their
vacancy request with several devices such as laptops or
blackberries. The used syntax for the mashup creation resembles a
service language such as BPEL [21]. But the difference is that
Serena Mashup Composer can consume and mix any kind of
widgets (feeds, plain HTML, services).

Figure 3. Serena Mashup Composer

Presentation, data, flow and consumer mashup tool. Example
for such as mashup is Microsoft Popfly [22]. Microsoft Popfly
uses Microsoft Silverlight [23], which is necessary since Popfly
uses a great amount of optical effects of Silverlight. Popfly is not
restricted to the generation of XML files but also offers
possibilities to show the data (e.g., by using modules such as
Microsoft Virtual Earth).
To use Microsoft Popfly also does not require any skills of
programming languages but the user should come with an
understanding of data formats. Figure 4 shows an example for
creating a mashup with Popfly. In this example the Facebook API
is used to visualize pictures of Facebook in a carrousel.

Figure 4. Microsoft Popfly

Language to create mashups. Several languages have been
proposed for the construction of mashups [24, 25, 26]. Among all
these languages, Orc [26] seems to be best documented and
developed. The Web page of Orc offers an editor for the code
programming. The code can be directly executed because the
editor is connected to a server. Orc is also available as a
standalone JAR file or Java application.
To write a mashup application in Orc the user should come with
knowledge in functional programming languages since Orc is a

concurrent functional programming language. The authors of Orc
define three appropriate application areas. Orc can be used as a
general purpose programming language for concise encoding of
concurrent and distributed applications, as a Web scripting
language to create a Web service mashup and as an executable
specification language for workflow applications and process
coordination problems. To be used as a language in the workflow
field Orc implements several workflow patterns [27]. Thus, Orc is
suitable to build process-oriented mashups.
Figure 5 shows an example of Orc syntax. The user is
simultaneously searching in Yahoo and Google for a term that can
be posed by the user after running the application. The ability to
pose a query argument is given by the pre-defined method
Prompt. The search field will appear when the user pushes the run
button (already performed in this example). The classes Yahoo
and Google are pre-defined in the “search.inc” library. The
authors of Orc have already defined several libraries but the
missing documentation of these libraries hamper the coding with
Orc.

Figure 5. Orc

Table 1. Classification of Mashup Tools

Pr
es

en
ta

tio
n

D
at

a

Fu
nc

tio
na

lit
y

E
xt

ra
ct

io
n

Fl
ow

C
on

su
m

er

E
nt

er
pr

is
e

Apatar

Data Mashups

Dapper

DERI pipes

Grazr

IBM InfoSphere

MashupHub

Intel
MashMaker

JackBe Presto

Microsoft Popfly

Openkapow

Procession

Rssbus

Serena Mashup
Suite

Snap Logic

TIBCO PageBus

Yahoo! Pipes

8. CONCLUSION
Mashups are suitable to build novel Web applications and to
create new forms of visualization without little knowledge of
programming languages. The lists of mashups created so far
cover the whole range of Web applications (e.g., finance,
government, sports or security).
However, little attention has been paid to classification models
and methodological guides for mashups.
The aim of this paper was to question the constructs and
methodical issues proposed so far for mashups and to define a
consistent understanding of mashups starting with a definition
and a classification model for mashups. We sketched a
methodical guide for the construction of mashups and we
presented several tools that support building mashups.
From our point of view further research is especially needed in
the fields of version control mechanisms, mashup certification,
mashup quality and data integrity.

Acknowledgement: This work has been developed with the
support of MEC under the project SESAMO TIN2007-62894.
The first author would like to thank the Karlsruhe House of
Young Scientists that has partially funded the research reported
in this paper.

9. REFERENCES

[1] Hoyer, V., and Fischer, M.: Market Overview of
Enterprise Mashup Tools. In International Conference on
Service oriented Computing, Volume 5364 of Lecture
Notes in Computer Science, Springer-Verlag, 2008, pp.
708-721.

[2] Li, S., and Gong, J.: Mashup: a New Way of Providing
Web Mapping and GIS Services. In ISPRS Congress
Beijing 2008, Proceedings of Commission IV, 2008, pp.
639-649.

[3] Dion Hinchcliffe: Is IBM making enterprise mashups
respectable?ZDNet Blog, 2006.
http://blogs.zdnet.com/Hinchcliffe/?p=49&tag=nl.e622

[4] Hartmann, B. and Doorley, S. and Klemmer, S. R.:
Hacking, Mashing, Gluing: Understanding Opportunistic
Design, In IEEE Pervasive Computing, IEEE
Educational Activities Department, 7(3), 2008, pp. 1536-
1268

[5] Ort, E., and Brydon, S., and Basler, M.: Mashup Styles,
Part 1: Server-Side Mashups, Sun Microsystems, May
2007.

[6] Zou, J. and Pavlovski, Christopher J.: Towards
Accountable Enterprise Mashup Services, In Proceedings
of the IEEE International Conference on e-Business
Engineering, IEEE Computer Society, 2007, pp. 205-212.

[7] Lawton, G.: Web 2.0 Creates Security Challenges, In:
Computer, 40(10), 2007, pp.13-16.

[8] Davidson, M. A., and Yoran, E.: Enterprise Security for
Web 2.0, Enterprise Security for Web 2.0, 40(11), 2007,
pp. 117-119

[9] De Keukelaere, F., and Bhola, S., and Steiner, M., and
Chari, S., and Yoshihama, S.: SMash: Secure Component
Model for Cross-Domain Mashups on Unmodified
Browsers, In Proceeding of the 17th International
Conference on World Wide Web, Beijing, China, ACM
Press, 2008, pp. 535-544.

[10] Jackson, C. and Wang, H. J.: Subspace: secure cross-
domain communication for web mashups, Proceedings of
the 16th International Conference on World Wide Web,
Banff, Canada, ACM Press, 2007, pp. 611-620.

[11] Vikram, K., and Steiner, M.: Mashup component
isolation via server-side analysis and instrumentation. In
Web 2.0 Security & Privacy Workshop. IEEE Computer
Society, Technical Committee on Security and Privacy,
2007.

[12] Sheth, A. P., and Gomadam, K. and Lathem, J.: SA-
REST: Semantically Interoperable and Easier-to-Use
Services and Mashups. IEEE Internet Computing, IEEE
Educational Activities Department, 11(6), 2007, pp. 91-
94.

[13] Gurram, R., and Mo, B., and Gueldemeister, R.: A Web
Based Mashup Platform for Enterprise 2.0, In Web
Information Systems Engineering Workshops, Volume
5176 of Lecture Notes in Computer Science, Springer-
Verlag, 2008, pp. 141-151.

[14] Ennals, R. J., and Garofalakis, M. N.: Mashmaker:
mashups for the masses. In Proceedings of the 2007
ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, ACM Press,
2007, pp. 1116–1118.

[15] DráŠil, P., Pitner, T., Hampel, T., and Steinbring, M.:
Get Ready For Mashability! Concepts for Web 2.0
Service Integration. In Proceedings of the 10th
International Conference on Enterprise Information
Systems. Barcelona, INSTICC, 2008. pp. 160-167.

[16] SOAP Version 1.2 Part 0: Primer, W3C
Recommendation, http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/, 27 April, 2007.

[17] Fielding, R. T.: Architectural styles and the design of
network-based software architectures, University of
California, Irvine, 2000, Dissertation.

[18] Di Lorenzo, G., and Hacid, H., and Paik, H., and
Benatallah, B.: Mashups for Data Integration: An
Analysis, School of Computer Science and Engineering,
University of New South Wales, Technical Report 0810
(2008),

[19] dapper: The Data Mapper. http://www.dapper.net/

[20] DERI Pipes: Open Source, Extendable, Embeddable Web
Data Mashups. http://pipes.deri.org/

[21] Alves, A., and Arkin, A., and Askary, S., and Barreto, C.,
and Bloch, B., and Curbera, F., and Ford, M., and
Goland, Y., and Guzar, A., and Kartha, N., and Liu,
C.K., and Khalaf, R., and Knig, D., and Marin, M., and

Mehta, V., and Thatte, S., and van der Rijn, D., and
Yendluri, P., and Yiu, A.: Web Services Business
Process Execution Language, Version 2.0, Specification
(2007).

[22] Microsoft Popfly. http://www.popfly.com/

[23] Microsoft Silverlight.
http://www.microsoft.com/SILVERLIGHT/

[24] Maximilien, E. M., and Wilkinson, H., and Desai, N. and
Tai, S.: A Domain-Specific Language for Web APIs and
Services Mashups. In Proceedings of the 5th
International Conference on Service-Oriented
Computing, Volume 4749 of Lecture Notes in Computer
Science, Springer-Verlag, 2007, pp. 13-26.

[25] Sabbouh, M., and Higginson, J., and Semy, S., and
Gagne, D.: Web mashup scripting language. In
Proceedings of the 16th International Conference on
World Wide Web, Banff, Canada, ACM Press, 2007, pp.
1305-1306

[26] Orc Language. http://orc.csres.utexas.edu/

[27] Cook, W. R., and Patwardhan, S., and Misra, J.:
Workflow patterns in Orc. In Proceedings of the 8th
International Conference on Coordination Models and
Languages (COORDINATION), Volume 4038 Lecture
Notes in Computer Science, Springer-Verlag, 2006, pp.
82–96.

